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Steady nonlinear waves in diverging channel flow
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An infinitely diverging channel with a line source of fluid at its vertex is a natural
idealization of flow in a finite channel expansion. Motivated by numerical results
obtained in an associated geometry (Tutty 1996), we show in this theoretical model
that for certain channel semi-angles α and Reynolds numbers Re := Q/2ν (Q is the
volume flux per unit length and ν the kinematic viscosity) a steady, spatially periodic,
two-dimensional wave exists which appears spatially stable and hence plausibly
realizable in the physical system. This spatial wave (or limit cycle) is born out of a
heteroclinic bifurcation across the subcritical pitchfork arms which originate out of
the well known Jeffery–Hamel bifurcation point at α = α2(Re). These waves have been
found over the range 5 � Re � 5000 and, significantly, exist for semi-angles α beyond
the point α2 where Jeffery–Hamel theory has been shown to be mute. However, the
limit of α → 0 at finite Re is not reached and so these waves have no relevance to
plane Poiseuille flow.

1. Introduction
Tutty (1996) has computed the solutions for some two-dimensional steady flows

of an incompressible viscous fluid along channels with long sections in which the
walls are plane and inclined at quite small angles. Although the channels have
quite complicated inlet and outlet regions, the long sections approximate well the
ideal conditions assumed by Jeffery and Hamel in deriving their exact solutions of
the Navier–Stokes equations for unbounded flow between inclined rigid planes (see,
e.g., Batchelor 1967, § 5.6). Some of Tutty’s solutions (Tutty 1996, figures 7, 9) are
remarkable because they are, as nearly as the eye can see, periodic downstream in the
variable

ρ := log r∗,

where r∗ is the radial coordinate such that the line of intersection of the extended plane
channel walls is r∗ = 0. These numerical solutions suggest that there exist hitherto
unknown periodic nonlinear steady wave solutions of the Jeffery–Hamel configuration.
Tutty’s waves seem to be symmetric, whereby they are invariant if translated half a
wavelength and reflected in the centre plane between the two inclined plane walls. The
ready convergence of Tutty’s iteration of his numerical procedure suggests plausibly
that the periodic solutions may be stable.

These results invite a systematic investigation of the existence and properties of
exactly periodic nonlinear steady wave solutions of the Jeffery–Hamel configuration.
To explain this, it is helpful first to recapitulate the relevant results for the

† Professor Drazin died on 10 January 2002.
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Figure 1. Configuration and notation of Jeffery–Hamel flows.

classic Jeffery–Hamel problem. Consider then the steady two-dimensional flow of
an incompressible viscous fluid between two inclined rigid planes θ = ±α driven by a
line source at r∗ =0 of volume flux Q per unit length. Here plane polar coordinates
r∗, θ are used, and the configuration of the flows is shown in figure 1. It is convenient
to define the Reynolds number as

Re := Q/2ν, (1)

where ν is the kinematic viscosity of the fluid. The classic theory of Jeffery and Hamel
(see Fraenkel 1962 for a definitive account) treats similarity solutions by assuming
purely radial flow, such that the streamfunction ψ∗ = Ψ∗(θ) and the radial velocity
ur = r−1

∗ Ψ ′
∗(θ). It is found that for each given pair of dimensionless parameters α, Re

there is an infinity of Jeffery–Hamel flows (Fraenkel 1962), but that only the unique
solution with unidirectional flow, when it exists, is spatially stable (Banks, Drazin &
Zaturska 1988). In this paper we adopt the nomenclature of Fraenkel (1962) and
consider only divergent channel flow. The unique spatially stable unidirectional
divergent flow (i.e. pure outflow) is therefore referred to as II1. This is a flow
symmetric about the channel’s midplane, that is ur (−θ ) = ur (θ). Flow II1 is known
to become spatially unstable (Sobey & Drazin 1986) through a subcritical pitchfork
bifurcation (see figure 2) as the semi-angle α increases through α2(Re) (α2(0) = 1

2
π and

α2(Re) ∼ 4.712/Re as Re → ∞). The spatially unstable symmetric flow for α > α2 is
known as type II2 and the spatially unstable asymmetric states are labelled as types
IV1 and V1 (see figure 2) where V1 is the mirror image of IV1 in the channel midplane.
Since just trivial state II1 is predicted to be spatially stable, the study of Jeffery–Hamel
flows makes only the modest prediction of the realizable flow for α < α2(Re). The II1

solution is predicted to lose stability through a subcritical pitchfork bifurcation. There
are no numerical or experimental studies with which to make a direct comparison
of this prediction. Those studies that do exist on flow in expanding channels have
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Figure 2. Velocity profiles of the more-important Jeffery–Hamel flows and a symbolic
indication of their subcritical pitchfork bifurcation.

sudden (step) or finite expansions. However, in all such studies, either experimental
(Cherdron, Durst & Whitelaw 1978; Nakayama 1988; Sobey & Drazin 1986) or
numerical (Cliffe & Greenfield 1982; Sobey & Drazin 1986; Fearn, Mullin & Cliffe
1990; Alleborn et al. 1997), a supercritical pitchfork is invariably found. Therefore
the contact Jeffery–Hamel flow theory in an infinitely diverging channel makes with
reality so far appears marginal. An important motivation for this study is to see if this
impression can be ameliorated through establishing that Tutty’s waves are connected
to the Jeffery–Hamel flows. This would imply that the theory of an infinitely diverging
channel does have something more to say about practical flows.

It seems clear that any connection between Tutty’s waves and Jeffery–Hamel flows
is not through a local bifurcation. The linear spatial stability of Jeffery–Hamel flows to
small steady two-dimensional perturbations of the streamfunction, with independent
modes proportional to rλ∗ = eλρ , is governed by the Dean problem (see Banks et al.
1988), which determines λ as a complex eigenvalue. Marginal stability occurs where
Re(λ) = 0. Calculations suggest that λ=0 wherever Re(λ) = 0, that is to say the
principle of exchange of (spatial) stabilities is valid. This linear result suggests that
there is no local bifurcation of a Jeffery–Hamel flow to a spatially periodic flow,
and that therefore continuation of Tutty’s waves by decreasing (or increasing) the
Reynolds number will not give a Jeffery–Hamel solution.

Tutty (1996) did not attempt to calculate the approximately periodic waves
systematically. He investigated the flow near (α2, Re2) over a range of values, and
reported representative results for a few values with small semi-angle α (1◦, 2◦ and
5.73◦) and Reynolds numbers of O(100). Since Jeffery–Hamel flows asymptote to
plane Poiseuille flow as α → 0, it is natural to ask how Tutty’s waves may relate to
the travelling wave solutions now known there (Zahn et al. 1974; Ehrenstein & Koch
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1991). Of course, there are other questions such as: over what ranges of α and Re do
these waves exist, how are they born and what happens to them, that is, what is the
bifurcation structure of Tutty’s waves as α and Re are varied?

To find answers to these questions, we first seek to establish the existence of
Tutty’s waves in the infinitely diverging channel idealization. The appropriate partial-
differential boundary-value problem is set up in § 2 to find them economically. This
problem is solved numerically and the numerical results interpreted in § 3 and § 4.
The waves are found, leaving no doubt of their existence, although the evidence for
their existence is only numerical. Their bifurcation structure is unfolded by use of
path-continuation software. The overall conclusions are presented in § 5.

2. The mathematical problem
The dimensional vorticity equation for unsteady two-dimensional flow of an

incompressible viscous fluid is well-known to be

ν∇2
∗ζ∗ +

1

r∗

∂(ψ∗, ζ∗)

∂(r∗, θ)
=

∂ζ∗

∂t∗
, (2)

where the streamfunction is ψ∗ and the vorticity is

ζ∗ = −∇2
∗ψ∗. (3)

Here the velocity components of the flow are ur = r−1
∗ ∂ψ∗/∂θ, uθ = −∂ψ∗/∂r∗, and ∇2

∗
is the Laplacian. The boundary conditions at the rigid walls of the Jeffery–Hamel
problem are

ψ∗ = ± 1
2
Q, ∂ψ∗/∂θ =0 at θ = ±α. (4)

The dimensionless vorticity equation becomes

1

Re
∇2ζ +

1

r

∂(ψ, ζ )

∂(r, θ)
=

∂ζ

∂t
, (5)

where r := r∗/r0, t := 1
2
t∗Q/r2

0 , ψ := 2ψ∗/Q, r0 is an arbitrary length scale,

ζ = −∇2ψ, (6)

and the dimensionless Laplacian operator is

∇2 :=
1

r

∂

∂r

(
∂

∂r

)
+

1

r2

∂2

∂θ2
.

The boundary conditions are

ψ = ±1, ∂ψ/∂θ = 0 at θ = ± α. (7)

Following Tutty’s (1996) work, we assume that there are solutions of period 2π/ω

in ρ := log r∗, and define new coordinates

X := ω log(r∗/r0), Y := θ/α, (8)

where the wavenumber ω has to be determined and r0 may be regarded as the distance
from the origin of the periodic wave cell, r0 < r∗ < r0e

2π/ω or 0 <X < 2π. Therefore
∇2 = α−2e−2X/ωD2, where

D2 :=
∂2

∂Y 2
+ α2ω2 ∂2

∂X2
,
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and so

ζ = − 1

α2
e−2X/ωD2ψ. (9)

Substitution of this expression into equation (5) yields

D2ζ + αωRe
∂(ψ, ζ )

∂(X, Y )
= α2Re e2X/ω ∂ζ

∂t
. (10)

Boundary conditions (7) become

ψ = ±1, ∂ψ/∂Y =0 at Y = ±1. (11)

Equations (9) and (10) over the domain Ω = {(X, Y ) : 0 < X < 2π, −1 <Y < 1}, with
boundary conditions (11) and the periodicity of 2π in X, define the problem to be
solved. The aim is to find solutions (ω as well as ψ and ζ ) for given values of Re, α.
Of course, the Jeffery–Hamel flows themselves (for which ψ is independent of X and
t , and ω is arbitrary) are special solutions.

It is convenient to define and use a transformed dependent variable,

Z := α2e2X/ωζ, (12)

so that equations (9) and (10) become

D2ψ = −Z (13)

and

D2Z − 4α2ω
∂Z

∂X
+ 4α2Z + αRe

[
ω

∂(ψ, Z)

∂(X, Y )
+ 2

∂ψ

∂Y
Z

]
= α2Re e2X/ω ∂Z

∂t
. (14)

To focus on the calculation of Tutty’s steady periodic waves, we further assume
that ψ is independent of t so that

D2Z − 4α2ω
∂Z

∂X
+ 4α2Z + αRe

[
ω

∂(ψ, Z)

∂(X, Y )
+ 2

∂ψ

∂Y
Z

]
= 0, (15)

and ψ also satisfies the symmetry condition

ψ(X + π, −Y ) = −ψ(X, Y ) (16)

for all (X, Y ) ∈ Ω . This symmetry condition exploits Tutty’s results by effectively
halving the computational domain, but at the cost of excluding the discovery of
solutions without this symmetry.

We have used a spectral method to solve the nonlinear partial-differential boundary-
value problem (13), (15), (11), (19) and (16) numerically. The essence of the method
is to take a Fourier expansion of ψ and Z in X and a Chebyshev expansion in Y

to reduce the problem to a nonlinear algebraic problem. The algebraic problem is
then truncated and solved by Newton–Raphson approximation and a path-following
algorithm; we used the software package PITCON (Rheinboldt & Burkardt 1983a, b),
to do this. The spectral method may be sketched as follows. Expand

ψ(X, Y ) =

N−1∑
n=0

anT2n+1(Y ) +

M∑
m = −M,m 
=0

N−1∑
n=0

bmne
imXφ(m)

n (Y ), (17)

Z(X, Y ) =

N−1∑
n=0

cnT2n+1(Y ) +

M∑
m= −M,m 
=0

N−1∑
n=0

dmne
imXφ(m)

n (Y ), (18)
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Figure 3. Spectral convergence: log10 of the modulus of the coefficients bm0 (×), bm5 (·), bm10

(�) and bm15 (+) for the streamfunction at (α, Re) = (0.1, 45) are plotted verses m, the spectral
degree (see the representation in equation (17)) calculated using (N,M) = (20, 150).

where the positive integers M, N are truncation parameters, to be taken as large as
is practical, Tn(Y ) = cos[n cos−1(Y )] is the Chebyshev polynomial of degree n, and

φ(m)
n (Y ) :=

{
T2n(Y ) m odd
T2n+1(Y ) m even

in order to satisfy the symmetry (16). For the solutions to be real,

b−mn = b∗
mn, d−mn = d∗

mn,

where an asterisk denotes complex conjugation. The problem is invariant under
translations in X, so, to make the solution unique (at least in a given neighbourhood
of phase space), we may impose a phase condition

Re(eiβb10) = 0 (19)

where β is a constant set by Tutty’s initial data, to fix the position of the wave relative
to X = 0. On equating coefficients of eimX and Tn(Y ) in equations (11), (13), (15) and
(19), this reduces the problem to a nonlinear algebraic problem for solutions specified
by the real coefficients {an}, {cn} and the complex coefficients {bmn}, {dmn}.

3. Results
Our investigation was initiated by taking unpublished wave data found by Tutty

(1996) at (α, Re) = (0.1, 45), converting it into the spectral representation (defined by
expressions (17) and (18)) and using this as a starting guess for a Newton–Raphson
scheme to solve the nonlinear problem for the spectral coefficients an, bmn, cn, dmn.
The fact that we obtained robust spectral (exponential) convergence over a range of
truncations (8 < N < 20, 30 < M < 200 – see figure 3) confirmed that the wave
existed in the infinitely diverging channel idealization. Once convergence had been
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Figure 4. Bifurcation diagram of ω versus α for Re= 45. The insets are contour plots of
the streamfunction at the indicated points on the solution branch. Starting at the top and
working downwards, (α, ω) = (0.1, 2.925) (Tutty’s initial data), (α, ω) = (0.106114, 2.73957),
(α, ω) = (0.10244, 1.489) and (α, ω) = (0.103587, 0.11813). All contour intervals are 0.1: the
lower two plots have extra contours with values 1.02 and 1.01 added.

established, one of the variables Re, α, ω was fixed, a second was varied and the
third allowed to be defined as part of the solution-finding procedure. In this way,
the two-dimensional surface of wave solutions in (α, Re, ω)-space was traced out. All
results were extensively checked by rerunning with different truncations. This proved
essential as the necessary truncation levels varied so much (see below) along a typical
solution branch.

Figure 4 shows the result of fixing the Reynolds number at Re= 45 and continuing
the wave solution in α from Tutty’s initial data at α = 0.1. The waves are clearly found
to exist at α values beyond α2(Re = 45) = 0.10428 but become hard to follow here as
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Figure 5. Two cross-sectional slices across the lowest ((α, ω) = (0.103587, 0.11813)) contour
plot in figure 4. These indicate that the regions of one-dimensional flow either side of the
rapid transition layer correspond very closely to the states IV1 and V1. On the upper plots,
the abscissa is dψ/dy which is proportional to ur .

interior cross-stream (Y ) gradients in the streamfunction become large (the required
truncation at α ≈ 0.106 was (N, M) = (25, 50) compared to just (N, M) = (10, 50) at
α = 0.1). When α is reduced below 0.1, the waves undergo a saddle-node bifurcation
at (α, ω) ≈ (0.0966, 3) and then ω → 0 as α → αh ≈ 0.1036. In order to estimate αh,
the streamwise (X) truncation had to be increased considerably from M = 50, with
M = 250 the largest value used. However large M was taken, the numerically continued
branch of solutions would monotonically approach αh before then oscillating and
turning away to lower α values. These latter ‘solutions’ were always spurious, being
strongly dependent on the particular truncation employed. Crucially the smallest
value of ω at which ‘true’ converged solutions could be secured decreased inversely
with the truncation level used. This indicated that the smallest streamwise lengthscale
present in the wave solution was O(ω) in the computational domain 0 � X � 2π
or equivalently O(1) in the physical domain of 0 � log(r∗/r0) � 2π/ω. The contour
plot insets on figure 4 show how the streamfunction increasingly divides into two
different regions with no cross-stream flow matched through a thin transitory layer
as α → αh. Measurements confirm that this transition layer is O(ω) thick and figure 5
shows that the two flows linked through this layer are very similar to the asymmetric
Jeffery–Hamel states IV1 and V1.
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Figure 6. This plot demonstrates that the limit-cycle period scales logarithmically with the
distance from the heteroclinic bifurcation point, that is, αh − α ∼ Ae−λ/ω . The best fit line has
λ= 3.22, Re= 45 and the data come from a (N,M) = (10, 200) run. Loss of numerical accuracy
is responsible for the drift off the best fit line at small values of ω.

Based on the evidence so far it seems reasonable to hypothesize that the wave
branch does connect with the ω = 0 axis at a distinquished point α = αh and that here
the flow solution represents a heteroclinic connection across the subcritical pitchfork
arms of the Jeffery–Hamel bifurcation centred at α = α2. In this scenario, Tutty’s wave
(or the continuation thereof) corresponds to the limit cycle born out of a heteroclinic
bifurcation (interpreting the streamwise coordinate X as the time variable). This is
certainly supported by finding the characteristically logarithmic scaling of the limit
cycle (spatial) period (2π/ω) with distance from the heteroclinic bifurcation (αh −α) –
see figure 6. However, there is the alternative possibility that Tutty’s waves result
from a codimension-2 point in (α, Re)-space and that (α, Re) = (0.1036, 45) is close
to that. Revisiting the Dean spatial stability problem fails to ever find more than one
eigenvalue becoming marginal along the curve α =α2(Re). To further confirm that
the bifurcation is not localized in (α, Re)-space, the branch of wave solutions existing
at Re = 45 can easily be extended over the Reynolds number range 10 � Re � 5000.
Figure 7 shows cross-sections of the wave solution surface at four different Reynolds
numbers (figure 8 shows contour plots of the streamfunctions at two points on
the Re= 10 and Re = 100 cross-sections). Capturing the saddle-node point on these
curves becomes increasingly difficult as Re increases, until beyond about Re =1000
the required truncation becomes too expensive. However, it is clear that αs , the value
of α which corresponds to the saddle nose, asymptotically approaches α2 which itself
approaches 4.712/Re as Re → ∞. This means that the wave branch never pierces the
α = 0 axis which at fixed Re corresponds to the plane Poiseuille limit. This is perhaps
not surprising given that only travelling wave solutions are known to exist there
rather than the steady waves discussed here.
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Figure 7. Four cross-sections of the wave solution surface in (α, Re, ω)-space at Re= 10, 15, 45
and 100. The solutions below the saddle-nose point are inferred spatially unstable (dashed line)
as opposed to those above, which are presumed stable (solid line). The two dots indicate the
parameter values at which the streamfunction contour plots of figure 8 have been produced.

Interestingly, over the range 5 � Re � 100 where there is sufficient numerical
accuracy available, the normalized distance between the pitchfork nose and the
inferred heteroclinic bifurcation point, (α2 − αh)/α2, is found to scale like Re−2 – see
figure 9. This suggests that the asymptotic limit Re → ∞ may offer more insight into
the situation.

3.1. Asymptotic limit Re → ∞
To explore the limit Re → ∞, we work with the expansion parameter

0 < δ2 :=
α2 − αh

α2

� 1 (20)

which measures the (small) distance of the heteroclinic connection to the pitchfork
nose, and the governing equations

D2Z − 4α2
2

∂Z

∂x
+ 4α2

2Z + α2Re

[
∂(ψ, Z)

∂(x, y)
+ 2

∂ψ

∂y
Z

]
= 0 (21)

and

Z = −D2ψ = −
(

∂2

∂y2
+ α2

2

∂2

∂x2

)
ψ (22)
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Figure 8. Contour plots of the streamfunctions at the two dots in figure 7: (a)
corresponds to (α, Re, ω) = (1.064772, 9.7245, 0.4202) with contour intervals of 0.5 to a
maximum of 11.5 (dashed lines indicating negative values), and (b) corresponds to
(α, Re, ω) = (0.05003, 100.204, 4.1691) with contour intervals of 0.1 to a maximum of 1.9.

Figure 9. A plot of (α2 − αh)/α2 against Re indicating O(Re−2) asymptotic behaviour. The
best fit line is 13.6Re−2.
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where x = X/ω to remove the implicit periodicity implied by ω and y := θ/α2 so that
now the boundary conditions are

ψ(x, ±(1 − δ2)) = ±1, ψy(x, ±(1 − δ2)) = 0. (23)

As in the weakly nonlinear analysis of Banks et al. (1988), an asymptotic expansion
of the form

ψ = G0(y; α2) + δG1(x, y) + δ2G2(x, y) + δ3G3(x, y) + . . . (24)

is opened up with G0(y; α2) corresponding to the (known) flow solution II1 precisely at
the pitchfork nose so that G0,yy(y; α2) = 0. Taylor-expanding the boundary conditions
then requires

G1 = G1,y =G2 =G2,y = 0, G3 = G1,y, G3,y = G1,yy at y = ±1. (25)

It is clear from the ensuing hierarchy of ordered equations that δ must scale with α2

or equivalently Re−1 as

α2 ∼ µ0

Re
+

µ1

Re2
+ . . . as Re → ∞ (26)

(where µ0 = 4.712) if the effects of streamwise dependence are to contribute at the
right order. We now explain this claim.

The leading O(1) problem defined by (21) and (22) and with the term 4α2
2Z

promoted in the ordering is

G0,yyyy + 4α2
2G0,yy + 2α2Re G0,yG0,yy =0 (27)

which with the boundary conditions G0(±1) = ±1 and G0,y(±1) = 0 specifies the
Jeffery–Hamel flow II1 at the pitchfork nose. At O(δ)

LG1 := G1,yyyy + 4α2
2G1,yy + µ0[2(G0,yG1,y),y + G0,yyyG1,x − G0,yG1,xyy] = 0 (28)

with G1(x, ± 1) = G1,y(x, ±1) = 0. If G1 is temporarily imagined independent of x,
this problem defines the structure (but not amplitude) of the asymmetric state which
defines the pitchfork arm (as α → α2) and is known to be proportional to G0,y(y; α2).
Interestingly, because of the special structure of the operator which premultiplies the
x-derivative, the full solution is

G1(x, y) =A(x)G0,y(y; α2) (29)

where A(x) remains undefined up to the obvious boundary condition, A(−∞) = −A(∞)
for a heteroclinic connection across the pitchfork arms. This is confirmed by the
numerical solutions which indicate that A(x) has a tanh-like behaviour. One would
imagine that an amplitude equation for A(x) would emerge through the first non-
trivial application of the Fredholm Alternative to a higher-order problem. This, after
all, is how the amplitude of the pitchfork arms, A(±∞), is found as a function of the
distance away from the bifurcation point (α2 −α)/α2 (Banks et al. 1988). However the
addition of the x-derivative crucially converts L from being an elliptic operator in y

into a parabolic operator in x and y. This means that no solvability condition exists
for the higher-order problems which take the form LGn = f (G0, G1, . . . , Gn−1). A
further indication of this is the fact that the dimension of the null space of the adjoint
of L is smaller than for L itself. This fatal flaw in the perturbative analysis attempted
here is nothing more than a manifestation of the fact that the heteroclinic bifurcation
is a global rather than local phenomenon. However, at least we can understand the
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scalings by this procedure so we press onto the O(δ2) problem

LG2 = µ0[ G1,yG1,xyy − G1,xG1,yyy − 2G1,yG1,yy ] (30)

with G2(x, ±1) = G2,y(x, ±1) = 0. Only the last term on the right is present in the
weakly nonlinear Jeffery–Hamel analysis but the two new x-derivative terms also
share the same y-symmetry so G2 is antisymmetric in y whereas G1 is symmetric
in y. This familiar situation means that the pitchfork analysis must proceed to the
next order to obtain a non-trivial solvability condition. The scaling α2

2 = λδ2 (i.e.
δ = O(Re−1)) ensures that the lowest-order terms due to x-variation with the same
symmetry in y as G1 emerge at precisely this order. Ignoring terms without this
symmetry, the problem at O(δ3) is

LG3 = −2λG1,xxyy + 4λG1,xyy + µ0[ G1,yG2,xyy + G1,xyyG2,y − G1,xG2,yyy

− G1,yyyG2,x + λG0,yG1,xxx − 2λG0,yG1,xx − 2G1,yG2,yy − 2G1,yyG2,y] (31)

with G3(x, ±1) = 0 and G3,y(x, ±1) = A(x)G0,yyy(±1; α2). Presumably only one
(positive) value of the free coefficient λ will ensure that the solution G3 smoothly
asymptotes to the right y-dependent function at either pitchfork arm. Resolving this
means tackling the full partial differential equation which reflects the global nature
of the heteroclinic connection. We can, however, motivate a much simplified model
of the situation to demonstrate that the dynamical picture advocated here is at least
plausible. The first simplification is motivated by the fact that G2(x, y) = 1

2
A2(x)G0,yy

is a particular solution to (30) which only falls short of being the complete solution
through failing to satisfy the derivative boundary conditions G2,y(x, ±1) = 0. Choosing

to assume that G2(x, y) = A2(x)Ĝ2(y) nevertheless allows us to apply a solvability-like

procedure to (31). This consists of forming the integral 〈G0,y, (31)〉 :=
∫ 1

−1
G0,y (31) dy

which gives

〈G0,y, LG3〉 = µ0λ
〈
G0,y, G

2
0,y

〉
Axxx − 2λ

〈
G0,y, G0,yyy + µ0G

2
0,y

〉
Axx

+ 4λ〈G0,y, G0,yyy〉Ax +µ0〈G0,y, 2G0,yyĜ2,yy + G0,yyyĜ2,y − G0,yĜ2,yyy

− 2G0,yyyyĜ2〉A2Ax − 2µ0〈G0,y, 2G0,yyĜ2,yy + 2G0,yyyĜ2,y〉A3. (32)

In the true solvability situation, the left-hand-side integral can be straightforwardly
evaluated by acting with the adjoint of L on G0,y . However here we are forced to
ignore the x-derivative part of the operator in L so that 〈G0,y, LG3〉 ∝ A. After
further ignoring the Axxx term, this can be rewritten in the general form

Axx = (α − α2)A + A3 − εAx(1 − A2) (33)

where for convenience we have set some of the coefficients to 1 and labelled another
by ε since this is only a heuristic model (actually this equation captures a generic
type of behaviour near a Takens–Bogdanov bifurcation point with symmetry; e.g. see
Guckenheimer & Holmes 1983). For ε 
= 0, the system can be viewed as the perturbed
Hamiltonian system

q̇ =p, (34)

ṗ = (α − α2)q + q3 − εp(1 − q2), (35)

where q = A and an overdot represents differentiation with respect to x. When ε = 0,
the system is Hamiltonian (H = 1

2
p2 − 1

2
(α − α2)q

2 − 1
4
q4) and there are heteroclinic

connections between the two saddles at q = ±(β :=
√

α2 − α) for α − α2 < 0. The
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Figure 10. Phase planes for the model system q̇ = p, ṗ = −β2q +q3 −0.5p(1−q2): ε = 0.5 for
greater clarity and q = x and p = y). Throughout the origin is a stable spiral. (a) αh <α <α2;
(b) αh � α <α2; (c) the heteroclinic connection at α = αh; (d) an unstable limit cycle is born
for α < αh.

‘upper’ (p � 0) connection is

qh(x; β) := β
e

√
2βx − 1

e
√

2βx + 1
, ph(x, β) :=

2
√

2β2e
√

2βx

(e
√

2βx + 1)2
. (36)

For ε > 0, Melnikov theory predicts that a heteroclinic connection will be re-
established in the asymptotic limit of ε → 0 when the function

M(β) :=

∫ ∞

−∞
p2

h(x; β)
(
1 − q2

h(x; β)
)
dx (37)

vanishes. This occurs very close to β =
√

5 or α2 − α ≈ 5. Figure 10 shows the
change in topology of the phase plane as α varies (ε = 0.5 for clarity and as a result
α2−αh = 4.964 rather than 5). We believe this models the situation in the full diverging
channel system.

4. Extended channel calculations
A number of numerical calculations were performed in an extended channel without

assuming periodicity to confirm the picture of the flow given above. A particular
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Figure 11. Channel geometry (not to scale).

motivation was to test the spatial stability of the various branches of the bifurcation
diagrams shown in figures 4 and 7.

The code used was a steady version of that detailed in Tutty & Pedley (1993),
which was also used by Tutty (1996). Initially, the geometry considered was the same
as in Tutty (1996), as shown in figure 11. The channel has an upstream region of
non-dimensional width 2, with parallel walls so that Poiseuille flow can be used at
the inlet, then a step on the upper wall of the channel, followed by a long region with
the upper wall inclined at an angle of 2α, with a flat lower wall. Far downstream, the
channel walls revert to parallel, for reasons of numerical stability. This downstream
region does not have any significant effect on the development of the flow/wave
over most of the channel. The calculations were performed in a uniform channel of
width 2, which was mapped onto the non-uniform channel shown in figure 11 using
a combination of an exponential transformation, which maps the uniform channel to
a half-plane, followed by a Schwarz–Christoffel transform which maps the half-plane
to the physical channel. The result is a conformal transformation between Ẑ = X̂ +iŶ
and z = x + iy where (X̂, Ŷ ) is the computational space and (x, y) physical space.
Details can be found in Tutty (1996). Note however that the mapping has been
adjusted so that here the computational domain has −1 � Ŷ � 1, whereas in Tutty
(1996) a channel of unit width was used.

In the main part of the channel where the walls are non-parallel, away from the
points where the shape changes, the computational coordinate system reduces to

X̂ = X/(αω), Ŷ = Y, (38)

where (X, Y ) are given by (8) above. This is the appropriate coordinate system to
view the wave in an extended channel as the periodic state will produce a wave of
constant length and strength. In particular, the scaled vorticity

ζ̂ = Jζ = − ∂2ψ

∂X̂2
− ∂2ψ

∂Ŷ 2
(39)

where J = |dz/dZ|2, should show a periodic pattern in X̂.
With a step that doubles the width of the channel when the shape changes,

the behaviour of the solution was investigated near the nose shown in figure 4
(α ≈ 0.0966), with excellent agreement. For all α > 0.0966, (0.097, 0.975, 0.1) a wave
was generated downstream of the step, tending to a periodic state in the computational
coordinates, which are essentially the same as (X, Y ) in this paper (see Tutty 1996).
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Figure 12. Scaled vorticity ζ̂ on the the lower wall for Re= 45, α = 0.0.0966 for a channel

with at step at X̂ ≈ 20.

However, for α < 0.0966 (0.0965, 0.964, 0.963, 0.962, 0.961 0.0960, 0.095), although a
wave was generated by the step, it decayed with the flow, tending to the symmetric
II1 Jeffery–Hamel flow far downstream. With α = 0.0966 there is an almost constant
strength wave, as can be seen from figure 12, which shows the scaled vorticity ζ̂ on
the lower wall against X̂.

With the step geometry, attempts were made to generate solutions on the lower
branch by stretching the upper-branch solution for a particular α, so that its
wavelength approximately matched that on the lower branch as shown in figure 4,
and using this as the initial condition for a new calculation. However, in all cases the
converged solution was that found on the upper branch, supporting the idea that the
lower branch is spatially unstable.

A further set of calculations was performed for a channel with a parallel region
downsteam but not upstream. Again, the physical channel was mapped to a uniform
computational channel, by dropping the appropriate part of the mapping outlined
above for the channel shown in figure 11. At the inlet a Jeffery–Hamel flow was
imposed. For Re =45 and α = 0.10244, one of the points shown on figure 4, if the
Jeffery–Hamel flow at the inlet was the symmetric II1 solution then there was no
wave, and the II1 solution was maintained downstream. However, if the inlet flow was
the IV1 Jeffery–Hamel flow, then a wave corresponding to that on the upper branch
of figure 4 was generated. Further, if the converged solution with the wave was used
as the starting condition for a calculation with the II1 solution at the inlet, the final
solution was that with II1 downstream, i.e. the wave did not persist. In contrast, and
as might be expected, using the converged II1-type solution as the starting point of
a calculation with IV1 at the inlet, produced a wave. This pattern of behaviour was
repeated for Re =500 with α = 0.0091, which is close to but below α2 ≈ 0.009424.
Again, the II1 Jeffery–Hamel solution at the inlet did not produce a wave while the
IV1 solution did. Also, swapping the inlet conditions with the converged solutions
swapped the final form of the solution.
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Figure 13. Scaled vorticity ζ̂ on the walls for Re= 45, α = 0.103587, with the IV1 flow at the
inlet. The solid line is for the lower wall and the dashed line for the upper wall.

Figure 14. Streamlines for Re =45, α = 0.103587, with the IV1 flow at the inlet. From the
bottom the lines are for ψ = −1.002, −1 to 1 in steps of 0.2, 1.005 and 1.01.

The ability of the IV1 inlet condition to produce the nonlinear wave on the upper
branch, however, depended on being sufficiently far from the pitchfork nose. Being
too close implies that the dynamics merely sit in the one-dimensional centre manifold
of the pitchfork bifurcation where the flow would evolve from IV1, which is spatially
unstable (Banks et al. 1988) to II1. To confirm this, the IV1 Jeffery–Hamel solution
was used at the inlet with Re = 45 and α = 0.103587. As expected, the numerical
solution moved away from the IV1 solution downstream from the inlet, the growth
did not persist and the solution eventually relaxed to a II1 Jeffery–Hamel solution far
downstream. This can be seen from figure 13 which shows the scaled vorticity ζ̂ on the
lower and upper walls of the channel against distance X̂, with the IV1 Jeffery–Hamel
flow imposed at X̂ =0. Figure 14 shows the streamlines for this flow. A long weak
eddy forms on the lower wall, with the streamlines moving towards the upper wall
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Figure 15. The log of the scaled vorticity perturbation (log(1− ζ̂ /ζ̂IV )) against X̂ on the walls
for Re =45, α = 0.103587, with the IV1 flow at the inlet. Also shown are straight lines with
slope 0.5252α. The lower lines are for the lower wall and the upper lines for the upper wall.

as the region of reverse flow on the upper wall closes. Further downstream, the flow
reattaches to the lower wall, and sufficiently far downstream takes the form of the II1

Jeffery–Hamel flow.
Spatial stability theory (Banks et al. 1988) predicts that near the inlet the

streamfunction will have the form

ψ = ψIV + rλψ1 . . . (40)

where ψIV is the streamfunction for the IV1 Jeffery–Hamel flow, λ= 0.5252 is the
smallest positive eigenvalue, and ψ1 the corresponding eigenfunction. It follows that
the log of the perturbation to the vorticity in the scaled form (39) should have a
linear variation with X̂ with slope αλ. This was found, as can be seen in figure 15.
Note that the mismatch near the inlet is due to end effects arising from the fact that
the perturbation is zero at the inlet as opposed to the small but finite value implied
by (40). Note also that before the solution relaxes to the II1 state downstream, it
passes through a stage in which the flow is nonlinear, although this nonlinearity is not
sufficiently strong to generate the change to the upper-branch periodic wave solution
which exists at this point in the (Re, α) parameter space.

Another attempt was made to generate the lower branch solution by using a starting
condition that periodically flipped between IV1 and V1 Jeffery–Hamel solutions with
the same wavelength as shown on figure 4 (ω = 1.498). Although initially the iteration
procedure appeared to be converging on this long-wavelength solution, this tendency
was temporary, and the final solution was the upper branch wave.

To summarize, with α > α2 (or equivalently Re >Re2 =Re(α2)) the wave was
obtained consistently in a long channel and found to possess the symmetry imposed
in (16). For αs <α <α2 (or Res <Re < Re2), whether the extended wave was obtained
depended on the conditions at the inlet, and the wave was not found at all for α < αs

(or Re <Res).
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5. Conclusions
In this paper we have argued on the basis of convincing numerical evidence that the

wave that Tutty (1996) isolated is born at α = αh(Re) < α2(Re) out of a heteroclinic
bifurcation across the subcritical pitchfork arms of the Jeffery–Hamel bifurcation
at α = α2(Re). This wave appears initially (spatially) unstable but, as its spatial
period decreases with decreasing α (fixed Re), undergoes a saddle-node bifurcation
to become stable. Significantly, this stable wave branch extends into α > α2(Re) so
that a realizable solution is predicted by the infinite diverging channel idealization
beyond α2 for the first time. Furthermore, it is clear that the saddle nose never pierces
the α-axis (αs > 0) so that this wave has no relevance to plane Poiseuille flow (which
corresponds to the limit of α → 0 at fixed Re). In fact, numerical evidence clearly
reveals the asymptotic behaviour

α2 − αh

α2

∼ 13.6

Re2
and αs ∼ α2 ∼ 4.712

Re
as Re → ∞.

The importance of these nonlinear waves is largely fundamental, for they are surely
one of the many classes of laminar solutions of the Navier–Stokes equations which
exist but become unstable as the Reynolds number increases, and ultimately become
the repellers in phase space associated with the disorder of turbulent flow. A number
of calculations were made using the unsteady version of the Navier–Stokes code
(Tutty & Pedley 1993) to investigate, albeit in an unsystematic manner, the temporal
response of the steady numerical solutions with an extended channel with a step to
a disturbance. For lower Reynolds numbers (e.g. 45 or 125), there was no sign of an
instability. However at Re = 400, a growing disturbance, much shorter in wavelength
than the steady wave, was generated. In this calculation the steady solution was
not perturbed, and the unsteady growth was provoked by the remaining small but
non-zero residuals in the calculation. The steady flow at this Reynolds number, which
is well below that for which all disturbances would decay in a channel with parallel
walls, was clearly unstable.

Many experiments on flow in expanding channels do exhibit a train of waves
downstream of an expansion which broadly resemble the idealized waves discussed
here. In particular, experimental (Sobey 1985) and numerical (Tutty & Pedley 1993)
studies of oscillatory flow over a backward-facing step indicate that a vortex wave
with the same general appearance is generated during the deceleration phase of the
flow. Also, the appearance of the waves considered here, including the double peak
in the streamfunction at Re= 100, is strongly reminiscent of the wave structure that
Rast (1994) found immediately downstream of a collapsible wall section in a two-
dimensional channel at Re= 300. In this situation, the collapsed section manufactures
a sudden expansion and the flow appears to adjust by forming a localized wave form
very similar to that found here at Re= 100. The one factor which is common to all
these flows is that the wave is initiated when the flow is decelerating, either due to
modulation of the main stream (Sobey 1985; Tutty & Pedley 1993), or through a
change in geometry (Rast 1994 and the current study).

This paper has been concerned mainly with steady two-dimensional waves with a
special symmetry. Of course, this is not to exclude the occurrence of other nonlinear
wave solutions to the Jeffery–Hamel problem. Indeed, it is natural to conjecture
that these waves are only special cases within whole families of generally unsteady,
three-dimensional nonlinear waves solutions. Whether the steady two-dimensional
waves found here can be used as a stepping stone to reach new solutions in the
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Jeffery–Hamel problem or extensions there of (e.g. Stow, Duck & Hewitt 2001;
Zaturska & Banks 2003) remains to be seen.

We are grateful to W.H.H. Banks and M. B. Zaturska for sharing their ideas and
results on the spatial stability of Jeffery–Hamel flows, to A.R. Champneys and
S.R. Wiggins for valuable discussions on heteroclinic bifurcations, and finally to
O. E. Jensen for recognising that the waves described here resemble the structures
found by M. P. Rast.
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